Given a positive integer n, find the least number of perfect square numbers (for example,
1, 4, 9, 16, ...
) which sum to n.
For example, given n =
12
, return 3
because 12 = 4 + 4 + 4
; given n = 13
, return 2
because 13 = 4 + 9
.
Credits:
Special thanks to @jianchao.li.fighter for adding this problem and creating all test cases.
Understand the problem:Special thanks to @jianchao.li.fighter for adding this problem and creating all test cases.
This is a DP problem.
-- Define dp[n + 1], where dp[i] means the least number of perfect square numbers for integer i.
-- Initialization. dp[0] = 0. dp[i] = Integer.MAX_VALUE since we calculate the min number
-- Transit function, dp[i] = min(dp[i], dp[i - j * j]), where j * j <= i
-- Final state: dp[n]
Code (Java):
public class Solution { public int numSquares(int n) { if (n <= 0) { return 0; } int[] dp = new int[n + 1]; for (int i = 1; i <= n; i++) { dp[i] = Integer.MAX_VALUE; for (int j = 1; j * j <= i; j++) { dp[i] = Math.min(dp[i], dp[i - j * j] + 1); } } return dp[n]; } }
No comments:
Post a Comment