Given a 2D binary matrix filled with 0's and 1's, find the largest square containing all 1's and return its area.
For example, given the following matrix:
1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 0Return 4.
This question can be solved by using DP.
-- Define dp[i][j] as the length of the maximal square of which the right bottom point ended with matrix[i][j].
-- Initial value dp[0][j] = matrix[0][j]; dp[i][0] = matrix[i][0];
-- Transit function: If matrix[i][j] == 1, dp[i][j] = Math.min(dp[i - 1][j], dp[i][j - 1], dp[i - 1][j - 1]) + 1;
-- Final state, max(dp[i][j] * dp[i][j])
Code (Java):
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | public class Solution { public int maximalSquare( char [][] matrix) { if (matrix == null || matrix.length == 0 ) { return 0 ; } int rows = matrix.length; int cols = matrix[ 0 ].length; int [][] dp = new int [rows][cols]; // Initialization for ( int i = 0 ; i < cols; i++) { dp[ 0 ][i] = matrix[ 0 ][i] - '0' ; } for ( int i = 0 ; i < rows; i++) { dp[i][ 0 ] = matrix[i][ 0 ] - '0' ; } for ( int i = 1 ; i < rows; i++) { for ( int j = 1 ; j < cols; j++) { if (matrix[i][j] == '1' ) { dp[i][j] = Math.min(Math.min(dp[i - 1 ][j], dp[i][j - 1 ]), dp[i - 1 ][j - 1 ]) + 1 ; } } } int maxArea = 0 ; for ( int i = 0 ; i < rows; i++) { for ( int j = 0 ; j < cols; j++) { maxArea = Math.max(maxArea, dp[i][j] * dp[i][j]); } } return maxArea; } } |
Update on 4/2/19: Rolling array
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | public class Solution { /** * @param matrix: a matrix of 0 and 1 * @return: an integer */ public int maxSquare( int [][] matrix) { if (matrix == null || matrix.length == 0 ) { return 0 ; } int m = matrix.length; int n = matrix[ 0 ].length; int maxLen = 0 ; int [][] dp = new int [ 2 ][n]; for ( int i = 0 ; i < n; i++) { if (matrix[ 0 ][i] == 1 ) { dp[ 0 ][i] = 1 ; maxLen = Math.max(maxLen, dp[ 0 ][i]); } } int cur = 0 ; int old = 0 ; for ( int i = 1 ; i < m; i++) { old = cur; cur = 1 - cur; dp[cur][ 0 ] = matrix[i][ 0 ] == 1 ? 1 : 0 ; maxLen = Math.max(maxLen, dp[cur][ 0 ]); for ( int j = 1 ; j < n; j++) { if (matrix[i][j] == 1 ) { dp[cur][j] = Math.min(dp[old][j - 1 ], Math.min(dp[old][j], dp[cur][j - 1 ])) + 1 ; } else { dp[cur][j] = 0 ; } maxLen = Math.max(maxLen, dp[cur][j]); } } return maxLen * maxLen; } } |
No comments:
Post a Comment