Given a non-empty binary search tree and a target value, find k values in the BST that are closest to the target.
Note:
- Given target value is a floating point.
- You may assume k is always valid, that is: k ≤ total nodes.
- You are guaranteed to have only one unique set of k values in the BST that are closest to the target.
Follow up:
Assume that the BST is balanced, could you solve it in less than O(n) runtime (where n = total nodes)?
Assume that the BST is balanced, could you solve it in less than O(n) runtime (where n = total nodes)?
Hint:
- Consider implement these two helper functions:
getPredecessor(N)
, which returns the next smaller node to N.getSuccessor(N)
, which returns the next larger node to N.
- Try to assume that each node has a parent pointer, it makes the problem much easier.
- Without parent pointer we just need to keep track of the path from the root to the current node using a stack.
- You would need two stacks to track the path in finding predecessor and successor node separately.
The straight-forward solution would be to use a heap. We just treat the BST just as a usual array and do a in-order traverse. Then we compare the current element with the minimum element in the heap, the same as top k problem.
Code (Java):
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution { private PriorityQueue<Integer> minPQ; private int count = 0; public List<Integer> closestKValues(TreeNode root, double target, int k) { minPQ = new PriorityQueue<Integer>(k); List<Integer> result = new ArrayList<Integer>(); inorderTraverse(root, target, k); // Dump the pq into result list for (Integer elem : minPQ) { result.add(elem); } return result; } private void inorderTraverse(TreeNode root, double target, int k) { if (root == null) { return; } inorderTraverse(root.left, target, k); if (count < k) { minPQ.offer(root.val); } else { if (Math.abs((double) root.val - target) < Math.abs((double) minPQ.peek() - target)) { minPQ.poll(); minPQ.offer(root.val); } } count++; inorderTraverse(root.right, target, k); } }
Analysis:
The time complexity would be O(k + (n - k) logk).
Space complexity is O(k).
A time linear solution:
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution { public List<Integer> closestKValues(TreeNode root, double target, int k) { List<Integer> result = new ArrayList<>(); if (root == null) { return result; } Stack<Integer> precedessor = new Stack<>(); Stack<Integer> successor = new Stack<>(); getPredecessor(root, target, precedessor); getSuccessor(root, target, successor); for (int i = 0; i < k; i++) { if (precedessor.isEmpty()) { result.add(successor.pop()); } else if (successor.isEmpty()) { result.add(precedessor.pop()); } else if (Math.abs((double) precedessor.peek() - target) < Math.abs((double) successor.peek() - target)) { result.add(precedessor.pop()); } else { result.add(successor.pop()); } } return result; } private void getPredecessor(TreeNode root, double target, Stack<Integer> precedessor) { if (root == null) { return; } getPredecessor(root.left, target, precedessor); if (root.val > target) { return; } precedessor.push(root.val); getPredecessor(root.right, target, precedessor); } private void getSuccessor(TreeNode root, double target, Stack<Integer> successor) { if (root == null) { return; } getSuccessor(root.right, target, successor); if (root.val <= target) { return; } successor.push(root.val); getSuccessor(root.left, target, successor); } }
Update on 4/30/19: Time complexity O(k + logn)
/** * Definition of TreeNode: * public class TreeNode { * public int val; * public TreeNode left, right; * public TreeNode(int val) { * this.val = val; * this.left = this.right = null; * } * } */ public class Solution { /** * @param root: the given BST * @param target: the given target * @param k: the given k * @return: k values in the BST that are closest to the target */ public List<Integer> closestKValues(TreeNode root, double target, int k) { // write your code here List<Integer> ans = new ArrayList<>(); if (root == null) { return ans; } // step 1: find the closet value and save the path Stack<TreeNode> lowerStack = new Stack<>(); Stack<TreeNode> upperStack = new Stack<>(); TreeNode p = root; while (p != null) { if (p.val < target) { lowerStack.push(p); p = p.right; } else { upperStack.push(p); p = p.left; } } for (int i = 0; i < k; i++) { if (lowerStack.isEmpty()) { TreeNode top = upperStack.pop(); ans.add(top.val); goUpperNext(top.right, upperStack); } else if (upperStack.isEmpty()) { TreeNode top = lowerStack.pop(); ans.add(top.val); goLowerNext(top.left, lowerStack); } else if (upperStack.peek().val - target <= target - lowerStack.peek().val) { TreeNode top = upperStack.pop(); ans.add(top.val); goUpperNext(top.right, upperStack); } else if (upperStack.isEmpty() || target - lowerStack.peek().val < upperStack.peek().val - target) { TreeNode top = lowerStack.pop(); ans.add(top.val); goLowerNext(top.left, lowerStack); } } return ans; } private void goUpperNext(TreeNode node, Stack<TreeNode> stack) { TreeNode p = node; while (p != null) { stack.push(p); p = p.left; } } private void goLowerNext(TreeNode node, Stack<TreeNode> stack) { TreeNode p = node; while (p != null) { stack.push(p); p = p.right; } } }
Your time linear solution is unnecessarily complicated. You are using O(N) space with those two stacks.
ReplyDeleteA simple solution with same time and space complexity of O(N) is:
1. Store InOrder traversal of the BST in an array. O(N) space and time
2. Find the element closest to target in the inorder array.(can be implemented in O(logn) using binary search variation or just traverse the array in O(N).
3. From the closest value in the array move left or right depending on which is closer similarly to what you have done with those two stacks. O(K)
the original solution is having a O(k + log(n)) time complexity as it doesn't need to have the full inorder traversal order out, while your solution will have a O(n) time complexity.
DeleteI dont get, how is this O(k + log(n))
Deletelets say bst has elements [1,2,3,4,5........T, t+1, t+2..T+n]
getPredessesor() you are doing an inorder traversal till T (1 to T)
and getSuccessor() your are doing a reverse inorder traversal till T (T+n to T)
Effectively this is o(n)is it not? Please correct me and explanation would be helpful
for brute force solution maxPQ should be used instead of minPQ as after adding k elements in PQ , when we are trying to add next element we should remove that one from PQ which is farthest among those K elements and that will be root in case of maxPQ;
ReplyDelete