Given an integer array in the construct method, implement two methods
query(start, end) and modify(index, value):- For query(start, end), return the sum from index start to index end in the given array.
- For modify(index, value), modify the number in the given index to value
Example
Example 1
Input:
[1,2,7,8,5]
[query(0,2),modify(0,4),query(0,1),modify(2,1),query(2,4)]
Output: [10,6,14]
Explanation:
Given array A = [1,2,7,8,5].
After query(0, 2), 1 + 2 + 7 = 10,
After modify(0, 4), change A[0] from 1 to 4, A = [4,2,7,8,5].
After query(0, 1), 4 + 2 = 6.
After modify(2, 1), change A[2] from 7 to 1,A = [4,2,1,8,5].
After query(2, 4), 1 + 8 + 5 = 14.
Example 2
Input:
[1,2,3,4,5]
[query(0,0),query(1,2),quert(3,4)]
Output: [1,5,9]
Explantion:
1 = 1
2 + 3 = 5
4 + 5 = 9
Challenge
O(logN) time for
query and modify.public class Solution {
/* you may need to use some attributes here */
SegmentTree segTree;
/*
* @param A: An integer array
*/
public Solution(int[] A) {
// do intialization if necessary
segTree = new SegmentTree(A);
}
/*
* @param start: An integer
* @param end: An integer
* @return: The sum from start to end
*/
public long query(int start, int end) {
return segTree.query(start, end);
}
/*
* @param index: An integer
* @param value: An integer
* @return: nothing
*/
public void modify(int index, int value) {
// write your code here
segTree.modify(index, value);
}
}
class SegmentTree {
private SegmentTreeNode root;
public SegmentTree(int[] A) {
root = buildSegmentTree(A);
}
public long query(int start, int end) {
return queryHelper(root, start, end);
}
public void modify(int index, int value) {
modifyHelper(root, index, value);
}
private void modifyHelper(SegmentTreeNode root, int index, int value) {
if (root.left == null && root.right == null && root.start == index && root.end == index) {
root.sum = value;
return;
}
int mid = root.start + (root.end - root.start) / 2;
if (index <= mid) {
modifyHelper(root.left, index, value);
root.sum = root.left.sum + root.right.sum;
} else {
modifyHelper(root.right, index, value);
root.sum = root.left.sum + root.right.sum;
}
}
private long queryHelper(SegmentTreeNode root, int start, int end) {
if (root == null || start > end) {
return 0;
}
if (start == root.start && end == root.end) {
return root.sum;
}
int mid = root.start + (root.end - root.start) / 2;
long leftSum = queryHelper(root.left, Math.max(root.start, start), Math.min(mid, end));
long rightSum = queryHelper(root.right, Math.max(mid + 1, start), Math.min(root.end, end));
return leftSum + rightSum;
}
private SegmentTreeNode buildSegmentTree(int[] A) {
if (A == null || A.length == 0) {
return null;
}
return buildSegmentTreeHelper(A, 0, A.length - 1);
}
private SegmentTreeNode buildSegmentTreeHelper(int[] A, int start, int end) {
if (start == end) {
return new SegmentTreeNode(A[start], start, start);
}
int mid = start + (end - start) / 2;
SegmentTreeNode leftChild = buildSegmentTreeHelper(A, start, mid);
SegmentTreeNode rightChild = buildSegmentTreeHelper(A, mid + 1, end);
SegmentTreeNode root = new SegmentTreeNode(leftChild.sum + rightChild.sum, start, end);
root.left = leftChild;
root.right = rightChild;
return root;
}
class SegmentTreeNode {
long sum;
int start, end;
SegmentTreeNode left, right;
public SegmentTreeNode(long sum, int start, int end) {
this.sum = sum;
this.start = start;
this.end = end;
left = null;
right = null;
}
}
}
No comments:
Post a Comment