Friday, May 24, 2019

Leetcode 518: Coin Change 2

You are given coins of different denominations and a total amount of money. Write a function to compute the number of combinations that make up that amount. You may assume that you have infinite number of each kind of coin.

    Example 1:
    Input: amount = 5, coins = [1, 2, 5]
    Output: 4
    Explanation: there are four ways to make up the amount:
    5=5
    5=2+2+1
    5=2+1+1+1
    5=1+1+1+1+1
    
    Example 2:
    Input: amount = 3, coins = [2]
    Output: 0
    Explanation: the amount of 3 cannot be made up just with coins of 2.
    
    Example 3:
    Input: amount = 10, coins = [10] 
    Output: 1
    

    Note:
    You can assume that
    • 0 <= amount <= 5000
    • 1 <= coin <= 5000
    • the number of coins is less than 500
    • the answer is guaranteed to fit into signed 32-bit integer

    Code (Java):
    class Solution {
        public int change(int amount, int[] coins) {
            if (amount < 0 || coins == null || coins.length == 0) {
                return amount == 0 ? 1 : 0;
            }
    
            int[][] dp = new int[coins.length + 1][amount + 1];
            for (int i = 0; i <= coins.length; i++) {
                dp[i][0] = 1;
            }
    
            for (int i = 1; i <= coins.length; i++) {
                for (int j = 1; j <= amount; j++) {
                    dp[i][j] = dp[i - 1][j];
    
                    if (j - coins[i - 1] >= 0) {
                        dp[i][j] += dp[i][j - coins[i - 1]];
                    }
                }
            }
    
            return dp[coins.length][amount];
    
        }
    }
    
    
    
    Space optimization:
    class Solution {
        public int change(int amount, int[] coins) {
            if (amount < 0 || coins == null || coins.length == 0) {
                return amount == 0 ? 1 : 0;
            }
    
            int[][] dp = new int[2][amount + 1];
            for (int i = 0; i <= coins.length; i++) {
                dp[0][0] = 1;
            }
    
            int old = 0;
            int cur = 0;
    
            for (int i = 1; i <= coins.length; i++) {
                old = cur;
                cur = 1 - cur;
                dp[cur][0] = 1;
                for (int j = 1; j <= amount; j++) {
                    dp[cur][j] = dp[old][j];
    
                    if (j - coins[i - 1] >= 0) {
                        dp[cur][j] += dp[cur][j - coins[i - 1]];
                    }
                }
            }
    
            return dp[cur][amount];
        }
    }
    

    Space Optimization 2:
    class Solution {
        public int change(int amount, int[] coins) {
            if (amount < 0 || coins == null || coins.length == 0) {
                return amount == 0 ? 1 : 0;
            }
    
            int[] dp = new int[amount + 1];
            for (int i = 0; i <= coins.length; i++) {
                dp[0] = 1;
            }
    
            for (int i = 1; i <= coins.length; i++) {
                dp[0] = 1;
                for (int j = 1; j <= amount; j++) {
                    if (j - coins[i - 1] >= 0) {
                        dp[j] += dp[j - coins[i - 1]];
                    }
                }
            }
    
            return dp[amount];
        }
    }
    

    No comments:

    Post a Comment