Given an unsorted array of integers, find the number of longest increasing subsequence.
Example 1:
Input: [1,3,5,4,7] Output: 2 Explanation: The two longest increasing subsequence are [1, 3, 4, 7] and [1, 3, 5, 7].
Example 2:
Input: [2,2,2,2,2] Output: 5 Explanation: The length of longest continuous increasing subsequence is 1, and there are 5 subsequences' length is 1, so output 5.
Note: Length of the given array will be not exceed 2000 and the answer is guaranteed to be fit in 32-bit signed int.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | class Solution { public int findNumberOfLIS( int [] nums) { if (nums == null || nums.length == 0 ) { return 0 ; } int [] lenDP = new int [nums.length]; int [] countDP = new int [nums.length]; int maxLen = 1 ; for ( int i = 0 ; i < nums.length; i++) { lenDP[i] = 1 ; countDP[i] = 1 ; for ( int j = 0 ; j < i; j++) { if (nums[i] > nums[j]) { if (lenDP[i] < lenDP[j] + 1 ) { lenDP[i] = lenDP[j] + 1 ; countDP[i] = countDP[j]; maxLen = Math.max(maxLen, lenDP[i]); } else if (lenDP[i] == lenDP[j] + 1 ) { countDP[i] += countDP[j]; } } } } int count = 0 ; for ( int i = 0 ; i < lenDP.length; i++) { if (lenDP[i] == maxLen) { count += countDP[i]; } } return count; } } |
No comments:
Post a Comment