implement regular expression matching with support for
'.'
and '*'
.'.' Matches any single character.
'*' Matches zero or more of the preceding element.
The matching should cover the entire input string (not partial).
The function prototype should be:
bool isMatch(const char *s, const char *p)
Some examples:
isMatch("aa","a") → false
isMatch("aa","aa") → true
isMatch("aaa","aa") → false
isMatch("aa", "a*") → true
isMatch("aa", ".*") → true
isMatch("ab", ".*") → true
isMatch("aab", "c*a*b") → true
Naive Solution:
The key of the problem is to check if p[j + 1] is a '*', and has two cases:
1. If p[j + 1] is a '.', then this case is simple. Just need to check s.charAt(i) == p.charAt(j) || p.charAt(j) == '.'. If not, return false, else s and p goes to the next character, ie. i + 1, j + 1.
2. If p[j + 1] is a "*", the case is a bit tricky.
Suppose that if s[i], s[i + 1], s[i + 2] .. s[i + k] is equal to p[j], that means all those could be the possible matches. So we need to check the rest of (i, j + 2), (i + 1, j + 2), (i + 2, j + 2), ... (i + k, j + 2).
Code (Java):
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | public class Solution { public boolean isMatch(String s, String p) { if (p == null || p.length() == 0 ) { return s == null || s.length() == 0 ; } // Case 1: p.length() == 1 if (p.length() == 1 ) { if (s == null || s.length() == 0 ) { return false ; } if (s.charAt( 0 ) != p.charAt( 0 ) && p.charAt( 0 ) != '.' ) { return false ; } return isMatch(s.substring( 1 ), p.substring( 1 )); } // Case 2: p.charAt(1) != '*' if (p.charAt( 1 ) != '*' ) { if (s.length() == 0 ) { return false ; } if (s.charAt( 0 ) == p.charAt( 0 ) || p.charAt( 0 ) == '.' ) { return isMatch(s.substring( 1 ), p.substring( 1 )); } else { return false ; } } else { // case 3 if (isMatch(s, p.substring( 2 ))) { return true ; } int i = 0 ; while (i < s.length() && (s.charAt(i) == p.charAt( 0 ) || p.charAt( 0 ) == '.' )) { if (isMatch(s.substring(i + 1 ), p.substring( 2 ))) { return true ; } i++; } return false ; } } } |
A DP Solution:
2-sequence problem:
-- dp[s.length() + 1][p.length() + 1], where dp[i][j] means the first i characters from string i matches the first j characters in string j.
-- Initial state: dp[0][0] = true, e.g. "" -> "", true.
dp[i][0] = false, i >= 1, any string cannot match a empty string
dp[0][i], if (p.charAt(j) == '*'), dp[0][j] = dp[0][j - 2]
-- Transit function:
-- If p.charAt(j) != '*'. Then IF s.charAt(i - 1) == p.charAt(j - 1) || p.charAt(j - 1) == '.'.
-- dp[i][j] = dp[i - 1][j - 1];
-- Else // p.charAt(j - 1) == "*"
-- If s.charAt(i - 1) != p.charAt(j - 2) && p.charAt(j - 2) != '.'
Then dp[i][j] = dp[i][j - 2] // zero matched, e.g. s = acdd, p = acb*dd.
-- Else
Then dp[i][j] = dp[i][j - 2] || // zero matched
dp[i][j - 1] || // 1 matched
dp[i - 1][j] // 2+ matched
Code (Java):
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | public class Solution { public boolean isMatch(String s, String p) { if (p == null || p.length() == 0 ) { return s == null || s.length() == 0 ; } int rows = s.length(); int cols = p.length(); boolean [][] dp = new boolean [rows + 1 ][cols + 1 ]; dp[ 0 ][ 0 ] = true ; for ( int j = 1 ; j <= cols; j++) { if (p.charAt(j - 1 ) == '*' ) { dp[ 0 ][j] = dp[ 0 ][j - 2 ]; } } for ( int i = 1 ; i <= rows; i++) { for ( int j = 1 ; j <= cols; j++) { char sChar = s.charAt(i - 1 ); char pChar = p.charAt(j - 1 ); if (pChar != '*' ) { if (sChar == pChar || pChar == '.' ) { dp[i][j] = dp[i - 1 ][j - 1 ]; } } else { if (sChar != p.charAt(j - 2 ) && p.charAt(j - 2 ) != '.' ) { dp[i][j] = dp[i][j - 2 ]; } else { dp[i][j] = dp[i][j - 2 ] || dp[i - 1 ][j] || dp[i][j - 1 ]; } } } } return dp[rows][cols]; } } |
No comments:
Post a Comment