One way to serialize a binary tree is to use pre-order traversal. When we encounter a non-null node, we record the node's value. If it is a null node, we record using a sentinel value such as
#. _9_
/ \
3 2
/ \ / \
4 1 # 6
/ \ / \ / \
# # # # # #
For example, the above binary tree can be serialized to the string
"9,3,4,#,#,1,#,#,2,#,6,#,#", where # represents a null node.
Given a string of comma separated values, verify whether it is a correct preorder traversal serialization of a binary tree. Find an algorithm without reconstructing the tree.
Each comma separated value in the string must be either an integer or a character
'#' representing null pointer.
You may assume that the input format is always valid, for example it could never contain two consecutive commas such as
"1,,3".
Example 1:
Return
"9,3,4,#,#,1,#,#,2,#,6,#,#"Return
true
Example 2:
Return
"1,#"Return
false
Example 3:
Return
Understand the problem:"9,#,#,1"Return
falseThe key of the problem is if a preorder traversal of a binary tree is valid, a leaf node must have the sequence like "number, #, #". Therefore, we can start from leaf nodes of tree, remove the leaf nodes by replacing the number, #, # by a single # until the tree becomes empty.
Code (Java):
public class Solution {
public boolean isValidSerialization(String preorder) {
if (preorder == null || preorder.length() == 0) {
return true;
}
String[] nodes = preorder.split(",");
Stack<String> stack = new Stack<>();
for (String node : nodes) {
if (node.equals("#")) {
while (!stack.isEmpty() && stack.peek().equals("#")) {
stack.pop();
if (stack.isEmpty()) {
return false;
}
stack.pop();
}
}
stack.push(node);
}
return stack.size() == 1 && stack.peek().equals("#");
}
}
No comments:
Post a Comment