Given a binary search tree, write a function
kthSmallest to find the kth smallest element in it.
Note:
You may assume k is always valid, 1 ≤ k ≤ BST's total elements.
You may assume k is always valid, 1 ≤ k ≤ BST's total elements.
Follow up:
What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kthSmallest routine?
What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kthSmallest routine?
Hint:
- Try to utilize the property of a BST.
- What if you could modify the BST node's structure?
- The optimal runtime complexity is O(height of BST).
Code (Java):
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
private int counter = 0;
private boolean found = false;
private int val = Integer.MIN_VALUE;
public int kthSmallest(TreeNode root, int k) {
if (root == null) {
return 0;
}
kthSmallestHelper(root, k);
return val;
}
private void kthSmallestHelper(TreeNode root, int k) {
if (root == null) {
return;
}
if (!found) {
kthSmallestHelper(root.left, k);
}
counter++;
if (counter == k) {
found = true;
val = root.val;
}
if (!found) {
kthSmallestHelper(root.right, k);
}
}
}
An O(h) solution:
If the BST node's structure can be modified. We let each node maintain the number of nodes of its left subtree. Therefore, for each node, we can compare k with the number of its subtree.
Code (Java):
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public int kthSmallest(TreeNode root, int k) {
if (root == null) {
return 0;
}
int leftNodes = getNumberNodes(root.left);
if(k == leftNodes + 1) {
return root.val;
} else if (k > leftNodes + 1) {
return kthSmallest(root.right, k - leftNodes - 1);
} else {
return kthSmallest(root.left, k);
}
}
private int getNumberNodes(TreeNode root) {
if (root == null) {
return 0;
}
return getNumberNodes(root.left) + getNumberNodes(root.right) + 1;
}
}
Update on 4/29/19:
/**
* Definition of TreeNode:
* public class TreeNode {
* public int val;
* public TreeNode left, right;
* public TreeNode(int val) {
* this.val = val;
* this.left = this.right = null;
* }
* }
*/
public class Solution {
/**
* @param root: the given BST
* @param k: the given k
* @return: the kth smallest element in BST
*/
public int kthSmallest(TreeNode root, int k) {
// write your code here
BSTNode bstRoot = buildBST(root);
BSTNode p = bstRoot;
while (p != null) {
int numLeft = p.left == null ? 0 : p.left.numNodes;
int numRight = p.right == null ? 0 : p.right.numNodes;
if (k == numLeft + 1) {
return p.val;
}
if (k <= numLeft) {
p = p.left;
} else {
p = p.right;
k = k- numLeft - 1;
}
}
return -1;
}
private BSTNode buildBST(TreeNode root) {
if (root == null) {
return null;
}
BSTNode left = buildBST(root.left);
BSTNode right = buildBST(root.right);
int numNodes = (left == null ? 0 : left.numNodes) +
(right == null ? 0 : right.numNodes) +
1;
BSTNode bstRoot = new BSTNode(root.val, numNodes);
bstRoot.left = left;
bstRoot.right = right;
return bstRoot;
}
}
class BSTNode {
int val;
int numNodes;
BSTNode left, right;
public BSTNode(int val, int numNodes) {
this.val = val;
this.numNodes = numNodes;
left = right = null;
}
}
No comments:
Post a Comment