Given an array of
n positive integers and a positive integer s, find the minimal length of a subarray of which the sum ≥ s. If there isn't one, return -1 instead.Example
Example 1:
Input: [2,3,1,2,4,3], s = 7
Output: 2
Explanation: The subarray [4,3] has the minimal length under the problem constraint.
Example 2:
Input: [1, 2, 3, 4, 5], s = 100
Output: -1
Challenge
If you have figured out the O(nlog n) solution, try coding another solution of which the time complexity is O(n).
public class Solution {
/**
* @param nums: an array of integers
* @param s: An integer
* @return: an integer representing the minimum size of subarray
*/
public int minimumSize(int[] nums, int s) {
if (nums == null || nums.length == 0) {
return -1;
}
int minLen = Integer.MAX_VALUE;
int sum = 0;
int left = 0;
for (int right = 0; right < nums.length; right++) {
sum += nums[right];
while (sum >= s) {
minLen = Math.min(minLen, right - left + 1);
sum -= nums[left];
left++;
}
}
return minLen == Integer.MAX_VALUE ? -1 : minLen;
}
}
No comments:
Post a Comment