Given a set of distinct positive integers, find the largest subset such that every pair (Si, Sj) of elements in this subset satisfies:
Si % Sj = 0 or Sj % Si = 0.
If there are multiple solutions, return any subset is fine.
Example 1:
Input: [1,2,3] Output: [1,2] (of course, [1,3] will also be ok)
Example 2:
Input: [1,2,4,8] Output: [1,2,4,8]
Analysis:
The idea is the same as LIS.
Code (Java):
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 | class Solution { public List<Integer> largestDivisibleSubset( int [] nums) { List<Integer> ans = new ArrayList<>(); if (nums == null || nums.length == 0 ) { return ans; } Arrays.sort(nums); int [] dp = new int [nums.length]; int max = 1 ; for ( int i = 0 ; i < nums.length; i++) { dp[i] = 1 ; for ( int j = 0 ; j < i; j++) { if (nums[i] % nums[j] == 0 ) { dp[i] = Math.max(dp[i], dp[j] + 1 ); max = Math.max(max, dp[i]); } } } // print the largest set // int i = nums.length - 1 ; while (i >= 0 && dp[i] != max) { i--; } ans.add(nums[i]); i--; max--; while (i >= 0 ) { if ((ans.get(ans.size() - 1 ) % nums[i]) == 0 && dp[i] == max) { ans.add(nums[i]); max--; } i--; } return ans; } } |
No comments:
Post a Comment