Given a set of distinct positive integers, find the largest subset such that every pair (Si, Sj) of elements in this subset satisfies:
Si % Sj = 0 or Sj % Si = 0.
If there are multiple solutions, return any subset is fine.
Example 1:
Input: [1,2,3] Output: [1,2] (of course, [1,3] will also be ok)
Example 2:
Input: [1,2,4,8] Output: [1,2,4,8]
Analysis:
The idea is the same as LIS.
Code (Java):
class Solution {
public List<Integer> largestDivisibleSubset(int[] nums) {
List<Integer> ans = new ArrayList<>();
if (nums == null || nums.length == 0) {
return ans;
}
Arrays.sort(nums);
int[] dp = new int[nums.length];
int max = 1;
for (int i = 0; i < nums.length; i++) {
dp[i] = 1;
for (int j = 0; j < i; j++) {
if (nums[i] % nums[j] == 0) {
dp[i] = Math.max(dp[i], dp[j] + 1);
max = Math.max(max, dp[i]);
}
}
}
// print the largest set
//
int i = nums.length - 1;
while (i >= 0 && dp[i] != max) {
i--;
}
ans.add(nums[i]);
i--;
max--;
while (i >= 0) {
if ((ans.get(ans.size() - 1) % nums[i]) == 0 && dp[i] == max) {
ans.add(nums[i]);
max--;
}
i--;
}
return ans;
}
}
No comments:
Post a Comment