Given
n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), write a function to find the number of connected components in an undirected graph.
Example 1:
0 3
| |
1 --- 2 4
Given
n = 5 and edges = [[0, 1], [1, 2], [3, 4]], return 2.
Example 2:
0 4
| |
1 --- 2 --- 3
Given
n = 5 and edges = [[0, 1], [1, 2], [2, 3], [3, 4]], return 1.
Note:
You can assume that no duplicate edges will appear in
DFS Solution:You can assume that no duplicate edges will appear in
edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.public class Solution {
public int countComponents(int n, int[][] edges) {
if (n <= 0 || edges == null) {
return 0;
}
if (n == 1 && edges.length == 0) {
return 1;
}
int result = 0;
boolean[] visited = new boolean[n];
// step 1: create the adj list from edge list
List[] adjList = new List[n];
for (int i = 0; i < n; i++) {
adjList[i] = new ArrayList<>();
}
for (int[] edge : edges) {
int from = edge[0];
int to = edge[1];
adjList[from].add(to);
adjList[to].add(from);
}
// step 2: calculate the number of cc
for (int i = 0; i < n; i++) {
if (!visited[i]) {
result++;
countCCHelper(i, adjList, visited);
}
}
return result;
}
private void countCCHelper(int node, List[] adjList, boolean[] visited) {
if (visited[node]) {
return;
}
visited[node] = true;
List<Integer> neighbors = adjList[node];
for (int neighbor : neighbors) {
countCCHelper(neighbor, adjList, visited);
}
}
}
A BFS Solution:
public class Solution {
public int countComponents(int n, int[][] edges) {
if (n <= 0 || edges == null) {
return 0;
}
if (n == 1 && edges.length == 0) {
return 1;
}
int result = 0;
boolean[] visited = new boolean[n];
// step 1: create the adj list from edge list
List[] adjList = new List[n];
for (int i = 0; i < n; i++) {
adjList[i] = new ArrayList<>();
}
for (int[] edge : edges) {
int from = edge[0];
int to = edge[1];
adjList[from].add(to);
adjList[to].add(from);
}
// step 2: calculate the number of cc
Queue<Integer> queue = new LinkedList<>();
for (int i = 0; i < n; i++) {
if (!visited[i]) {
result++;
countCCHelper(i, adjList, visited, queue);
}
}
return result;
}
private void countCCHelper(int node, List[] adjList, boolean[] visited, Queue<Integer> queue) {
fill(node, adjList, visited, queue);
while (!queue.isEmpty()) {
int currNode = queue.poll();
List<Integer> neighbors = adjList[currNode];
for (Integer neighbor : neighbors) {
fill(neighbor, adjList, visited, queue);
}
}
}
private void fill(int node, List[] adjList, boolean[] visited, Queue<Integer> queue) {
if (visited[node]) {
return;
}
visited[node] = true;
queue.offer(node);
}
}
Union-find solution:
private int[] father;
public int countComponents(int n, int[][] edges) {
Set<Integer> set = new HashSet<Integer>();
father = new int[n];
for (int i = 0; i < n; i++) {
father[i] = i;
}
for (int i = 0; i < edges.length; i++) {
union(edges[i][0], edges[i][1]);
}
for (int i = 0; i < n; i++){
set.add(find(i));
}
return set.size();
}
int find(int node) {
if (father[node] == node) {
return node;
}
father[node] = find(father[node]);
return father[node];
}
void union(int node1, int node2) {
father[find(node1)] = find(node2);
}
No comments:
Post a Comment