A complete Java implementation:
/************************************************************************* * Compilation: javac BST.java * Execution: java BST * Dependencies: StdIn.java StdOut.java Queue.java * Data files: http://algs4.cs.princeton.edu/32bst/tinyST.txt * * A symbol table implemented with a binary search tree. * * % more tinyST.txt * S E A R C H E X A M P L E * * % java BST < tinyST.txt * A 8 * C 4 * E 12 * H 5 * L 11 * M 9 * P 10 * R 3 * S 0 * X 7 * *************************************************************************/ import java.util.NoSuchElementException; public class BST<Key extends Comparable<Key>, Value> { private Node root; // root of BST private class Node { private Key key; // sorted by key private Value val; // associated data private Node left, right; // left and right subtrees private int N; // number of nodes in subtree public Node(Key key, Value val, int N) { this.key = key; this.val = val; this.N = N; } } // is the symbol table empty? public boolean isEmpty() { return size() == 0; } // return number of key-value pairs in BST public int size() { return size(root); } // return number of key-value pairs in BST rooted at x private int size(Node x) { if (x == null) return 0; else return x.N; } /*********************************************************************** * Search BST for given key, and return associated value if found, * return null if not found ***********************************************************************/ // does there exist a key-value pair with given key? public boolean contains(Key key) { return get(key) != null; } // return value associated with the given key, or null if no such key exists public Value get(Key key) { return get(root, key); } private Value get(Node x, Key key) { if (x == null) return null; int cmp = key.compareTo(x.key); if (cmp < 0) return get(x.left, key); else if (cmp > 0) return get(x.right, key); else return x.val; } /*********************************************************************** * Insert key-value pair into BST * If key already exists, update with new value ***********************************************************************/ public void put(Key key, Value val) { if (val == null) { delete(key); return; } root = put(root, key, val); assert check(); } private Node put(Node x, Key key, Value val) { if (x == null) return new Node(key, val, 1); int cmp = key.compareTo(x.key); if (cmp < 0) x.left = put(x.left, key, val); else if (cmp > 0) x.right = put(x.right, key, val); else x.val = val; x.N = 1 + size(x.left) + size(x.right); return x; } /*********************************************************************** * Delete ***********************************************************************/ public void deleteMin() { if (isEmpty()) throw new NoSuchElementException("Symbol table underflow"); root = deleteMin(root); assert check(); } private Node deleteMin(Node x) { if (x.left == null) return x.right; x.left = deleteMin(x.left); x.N = size(x.left) + size(x.right) + 1; return x; } public void deleteMax() { if (isEmpty()) throw new NoSuchElementException("Symbol table underflow"); root = deleteMax(root); assert check(); } private Node deleteMax(Node x) { if (x.right == null) return x.left; x.right = deleteMax(x.right); x.N = size(x.left) + size(x.right) + 1; return x; } public void delete(Key key) { root = delete(root, key); assert check(); } private Node delete(Node x, Key key) { if (x == null) return null; int cmp = key.compareTo(x.key); if (cmp < 0) x.left = delete(x.left, key); else if (cmp > 0) x.right = delete(x.right, key); else { if (x.right == null) return x.left; if (x.left == null) return x.right; Node t = x; x = min(t.right); x.right = deleteMin(t.right); x.left = t.left; } x.N = size(x.left) + size(x.right) + 1; return x; } /*********************************************************************** * Min, max, floor, and ceiling ***********************************************************************/ public Key min() { if (isEmpty()) return null; return min(root).key; } private Node min(Node x) { if (x.left == null) return x; else return min(x.left); } public Key max() { if (isEmpty()) return null; return max(root).key; } private Node max(Node x) { if (x.right == null) return x; else return max(x.right); } public Key floor(Key key) { Node x = floor(root, key); if (x == null) return null; else return x.key; } private Node floor(Node x, Key key) { if (x == null) return null; int cmp = key.compareTo(x.key); if (cmp == 0) return x; if (cmp < 0) return floor(x.left, key); Node t = floor(x.right, key); if (t != null) return t; else return x; } public Key ceiling(Key key) { Node x = ceiling(root, key); if (x == null) return null; else return x.key; } private Node ceiling(Node x, Key key) { if (x == null) return null; int cmp = key.compareTo(x.key); if (cmp == 0) return x; if (cmp < 0) { Node t = ceiling(x.left, key); if (t != null) return t; else return x; } return ceiling(x.right, key); } /*********************************************************************** * Rank and selection ***********************************************************************/ public Key select(int k) { if (k < 0 || k >= size()) return null; Node x = select(root, k); return x.key; } // Return key of rank k. private Node select(Node x, int k) { if (x == null) return null; int t = size(x.left); if (t > k) return select(x.left, k); else if (t < k) return select(x.right, k-t-1); else return x; } public int rank(Key key) { return rank(key, root); } // Number of keys in the subtree less than key. private int rank(Key key, Node x) { if (x == null) return 0; int cmp = key.compareTo(x.key); if (cmp < 0) return rank(key, x.left); else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right); else return size(x.left); } /*********************************************************************** * Range count and range search. ***********************************************************************/ public Iterable<Key> keys() { return keys(min(), max()); } public Iterable<Key> keys(Key lo, Key hi) { Queuequeue = new Queue (); keys(root, queue, lo, hi); return queue; } private void keys(Node x, Queue<Key> queue, Key lo, Key hi) { if (x == null) return; int cmplo = lo.compareTo(x.key); int cmphi = hi.compareTo(x.key); if (cmplo < 0) keys(x.left, queue, lo, hi); if (cmplo <= 0 && cmphi >= 0) queue.enqueue(x.key); if (cmphi > 0) keys(x.right, queue, lo, hi); } public int size(Key lo, Key hi) { if (lo.compareTo(hi) > 0) return 0; if (contains(hi)) return rank(hi) - rank(lo) + 1; else return rank(hi) - rank(lo); } // height of this BST (one-node tree has height 0) public int height() { return height(root); } private int height(Node x) { if (x == null) return -1; return 1 + Math.max(height(x.left), height(x.right)); } // level order traversal public Iterable<Key> levelOrder() { Queue<Key> keys = new Queue<Key>(); Queue<Node> queue = new Queue<Node>(); queue.enqueue(root); while (!queue.isEmpty()) { Node x = queue.dequeue(); if (x == null) continue; keys.enqueue(x.key); queue.enqueue(x.left); queue.enqueue(x.right); } return keys; } /************************************************************************* * Check integrity of BST data structure *************************************************************************/ private boolean check() { if (!isBST()) StdOut.println("Not in symmetric order"); if (!isSizeConsistent()) StdOut.println("Subtree counts not consistent"); if (!isRankConsistent()) StdOut.println("Ranks not consistent"); return isBST() && isSizeConsistent() && isRankConsistent(); } // does this binary tree satisfy symmetric order? // Note: this test also ensures that data structure is a binary tree since order is strict private boolean isBST() { return isBST(root, null, null); } // is the tree rooted at x a BST with all keys strictly between min and max // (if min or max is null, treat as empty constraint) // Credit: Bob Dondero's elegant solution private boolean isBST(Node x, Key min, Key max) { if (x == null) return true; if (min != null && x.key.compareTo(min) <= 0) return false; if (max != null && x.key.compareTo(max) >= 0) return false; return isBST(x.left, min, x.key) && isBST(x.right, x.key, max); } // are the size fields correct? private boolean isSizeConsistent() { return isSizeConsistent(root); } private boolean isSizeConsistent(Node x) { if (x == null) return true; if (x.N != size(x.left) + size(x.right) + 1) return false; return isSizeConsistent(x.left) && isSizeConsistent(x.right); } // check that ranks are consistent private boolean isRankConsistent() { for (int i = 0; i < size(); i++) if (i != rank(select(i))) return false; for (Key key : keys()) if (key.compareTo(select(rank(key))) != 0) return false; return true; } /***************************************************************************** * Test client *****************************************************************************/ public static void main(String[] args) { BST<String, Integer> st = new BST<String, Integer>(); for (int i = 0; !StdIn.isEmpty(); i++) { String key = StdIn.readString(); st.put(key, i); } for (String s : st.levelOrder()) StdOut.println(s + " " + st.get(s)); StdOut.println(); for (String s : st.keys()) StdOut.println(s + " " + st.get(s)); } }
Another BST deletion:
http://buttercola.blogspot.com/2014/12/data-structure-algorithms-binary-search.html
No comments:
Post a Comment