Given n distinct positive integers, integer k (k <= n) and a number target.
Find k numbers where sum is target. Calculate how many solutions there are?
Example
Understand the problem:
It is another back pack problem, choosing k items out of n items, where its sum equals to k.
So we could still use back pack DP solution.
Solution:
Idea: Using back pack dp
Given [1,2,3,4], k=2, target=5. There are 2 solutions:
[1,4] and [2,3], return 2.
It is another back pack problem, choosing k items out of n items, where its sum equals to k.
So we could still use back pack DP solution.
Solution:
Idea: Using back pack dp
- Definition: dp[n + 1][k + 1][target + 1], where dp[i][j][m] means choosing j elements out of the first i elements, and its sum equals to m
- Initial state: dp[0][0][0] = 1, dp[i][0][0] = 1, 1 <= i <= n
- Transit function:
- dp[i][j][m] = dp[i - 1][j][m] // no choose item i
- if (A[i - 1] <= m) dp[i][j][m] += dp[i - 1][j - 1][m - A[i - 1]] // choose item i
- Final state: dp[n][k][target];
Code (Java):
public class Solution { /** * @param A: an integer array. * @param k: a positive integer (k <= length(A)) * @param target: a integer * @return an integer */ public int solutionKSum(int A[],int k,int target) { // write your code here if ((A == null || A.length == 0) && k == 0 && target == 0) { return 1; } if (A == null || A.length == 0 || k <= 0 || target <= 0 || k > A.length) { return 0; } int[][][] dp = new int[A.length + 1][k + 1][target + 1]; dp[0][0][0] = 1; for (int i = 1; i <= A.length; i++) { dp[i][0][0] = 1; } for (int i = 1; i <= A.length; i++) { for (int j = 1; j <= k; j++) { for (int m = 1; m <= target; m++) { dp[i][j][m] = dp[i - 1][j][m]; // no choose item i if (A[i - 1] <= m) { dp[i][j][m] += dp[i - 1][j - 1][m - A[i - 1]]; // chose item i } } } } return dp[A.length][k][target]; } }
No comments:
Post a Comment