Given a binary tree containing digits from
0-9
only, each root-to-leaf path could represent a number.
An example is the root-to-leaf path
1->2->3
which represents the number 123
.
Find the total sum of all root-to-leaf numbers.
For example,
1 / \ 2 3
The root-to-leaf path
The root-to-leaf path
1->2
represents the number 12
.The root-to-leaf path
1->3
represents the number 13
.
Return the sum = 12 + 13 =
Understand the problem:25
.The problem asks for the sum of all root-to-leaf numbers. The problem itself is not hard to understand. Use DFS is the natural way. The only thing to note is the overflow problem, so we may use a long long to store the intermediate results.
Solution:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | /** * Definition for binary tree * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution { long pathSum = 0 ; public int sumNumbers(TreeNode root) { sumNumbersHelper(root, 0 ); return ( int )pathSum; } private void sumNumbersHelper(TreeNode root, long curSum) { if (root == null ) { return ; } curSum = curSum * 10 + root.val; if (root.left == null && root.right == null ) { pathSum += curSum; } sumNumbersHelper(root.left, curSum); sumNumbersHelper(root.right, curSum); } } |
Update on 10/8/14:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | /** * Definition for binary tree * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution { public int sumNumbers(TreeNode root) { return sumNumbersHelper(root, 0 ); } private int sumNumbersHelper(TreeNode root, int preSum) { if (root == null ) { return 0 ; } int curSum = root.val + preSum * 10 ; if (root.left == null && root.right == null ) { return curSum; } return sumNumbersHelper(root.left, curSum) + sumNumbersHelper(root.right, curSum); } } |
No comments:
Post a Comment