Given a sorted array of integers, find the starting and ending position of a given target value.
Your algorithm's runtime complexity must be in the order of O(log n).
If the target is not found in the array, return
[-1, -1].
For example,
Given
return
Understand the problem:Given
[5, 7, 7, 8, 8, 10] and target value 8,return
[3, 4].The problem gives a sorted array of integers, find the starting and ending position of a given target value. It requires the time complexity as O(logn), which indicates to use binary search. If not found, return [-1, -1].
Solution:
Since the problem asks for O(logn) solution, we can solve this problem by using the binary search for the first and last index of the target.
Code (Java):
public class Solution {
public int[] searchRange(int[] A, int target) {
if (A == null || A.length == 0) {
int[] result = {-1, -1};
return result;
}
int[] result = new int[2];
// Find the first index of the target value
result[0] = binarySearchFirstIndex(A, target);
if (result[0] == -1) {
result[1] = -1;
return result;
}
// Find the last index of the target value
result[1] = binarySearchLastIndex(A, target);
return result;
}
private int binarySearchFirstIndex(int[] A, int target) {
int lo = 0;
int hi = A.length - 1;
while (lo + 1 < hi) {
int mid = lo + (hi - lo) / 2;
if (A[mid] == target) {
hi = mid;
} else if (A[mid] > target) {
hi = mid;
} else {
lo = mid;
}
}
if (A[lo] == target) {
return lo;
}
if (A[hi] == target) {
return hi;
}
return -1;
}
private int binarySearchLastIndex(int[] A, int target) {
int lo = 0;
int hi = A.length - 1;
while (lo + 1 < hi) {
int mid = lo + (hi - lo) / 2;
if (A[mid] == target) {
lo = mid;
} else if (A[mid] > target) {
hi = mid;
} else {
lo = mid;
}
}
if (A[hi] == target) {
return hi;
}
if (A[lo] == target) {
return lo;
}
return -1;
}
}
No comments:
Post a Comment