Given a binary tree containing digits from
0-9 only, each root-to-leaf path could represent a number.
An example is the root-to-leaf path
1->2->3 which represents the number 123.
Find the total sum of all root-to-leaf numbers.
For example,
1 / \ 2 3
The root-to-leaf path
The root-to-leaf path
1->2 represents the number 12.The root-to-leaf path
1->3 represents the number 13.
Return the sum = 12 + 13 =
Understand the problem:25.The problem asks for the sum of all root-to-leaf numbers. The problem itself is not hard to understand. Use DFS is the natural way. The only thing to note is the overflow problem, so we may use a long long to store the intermediate results.
Solution:
/**
* Definition for binary tree
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
long pathSum = 0;
public int sumNumbers(TreeNode root) {
sumNumbersHelper(root, 0);
return (int)pathSum;
}
private void sumNumbersHelper(TreeNode root, long curSum) {
if (root == null) {
return;
}
curSum = curSum * 10 + root.val;
if (root.left == null && root.right == null) {
pathSum += curSum;
}
sumNumbersHelper(root.left, curSum);
sumNumbersHelper(root.right, curSum);
}
}
Update on 10/8/14:
/**
* Definition for binary tree
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public int sumNumbers(TreeNode root) {
return sumNumbersHelper(root, 0);
}
private int sumNumbersHelper(TreeNode root, int preSum) {
if (root == null) {
return 0;
}
int curSum = root.val + preSum * 10;
if (root.left == null && root.right == null) {
return curSum;
}
return sumNumbersHelper(root.left, curSum) + sumNumbersHelper(root.right, curSum);
}
}
No comments:
Post a Comment