Given a binary tree, return the preorder traversal of its nodes' values.
For example:
Given binary tree
Given binary tree
{1,#,2,3}, 1
\
2
/
3
return
[1,2,3].
Note: Recursive solution is trivial, could you do it iteratively?
Understand the problem:
The problem asks for a preorder traversal of a binary tree. So first of all, you should understand what is preorder traversal of a binary tree. There is a post described about the tree traversal in detail.
http://www.cs.cmu.edu/~adamchik/15-121/lectures/Trees/trees.html
Basically, preorder traversal is to visit the parent first, then left children, then right children.
Recursive Approach:
The recursive approach is very straight-forward, just as how the binary tree is defined.
Code (Java):
/**
* Definition for binary tree
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public ArrayList<Integer> preorderTraversal(TreeNode root) {
ArrayList<Integer> result = new ArrayList<Integer>();
preorderTraversal(root, result);
return result;
}
private void preorderTraversal(TreeNode node, ArrayList<Integer> result) {
if (node == null) return;
result.add(node.val);
if (node.left != null) preorderTraversal(node.left, result);
if (node.right != null) preorderTraversal(node.right, result);
}
}
Discussion:
The method takes O(n) time since we traverse all nodes of the tree. The space complexity is O(h) where h is the height of the tree.
Iterative approach:
In the iterative approach, we use a stack to store the intermediate data, just to mimic the recursive approach. The algorithm pops a node from the stack and prints the current value and push its right child into the stack, then push its left child into the stack.
Code (Java):
/**
* Definition for binary tree
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public ArrayList<Integer> preorderTraversal(TreeNode root) {
ArrayList<Integer> result = new ArrayList<Integer>();
if (root == null) return result;
Stack<TreeNode> stack = new Stack<TreeNode>();
stack.push(root);
while (! stack.isEmpty()) {
TreeNode temp = stack.pop();
result.add(temp.val);
if (temp.right != null) stack.push(temp.right);
if (temp.left != null) stack.push(temp.left);
}
return result;
}
}
Summary:
In this post, we learned the preorder binary tree traversal. The recursive approach is straight-forward to implement. But make sure you understand the details. The iterative approach is close to recursive, but using a stack explicitly. In many tree-based problem, a stack is commonly used in iterative approach.
Update on 9/29/14:
/**
* Definition for binary tree
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public List<Integer> preorderTraversal(TreeNode root) {
List<Integer> result = new ArrayList<Integer>();
if (root == null) {
return result;
}
Stack<TreeNode> stack = new Stack<TreeNode>();
stack.push(root);
while (!stack.isEmpty()) {
TreeNode curr = stack.pop();
result.add(curr.val);
if (curr.right != null) {
stack.push(curr.right);
}
if (curr.left != null) {
stack.push(curr.left);
}
}
return result;
}
}
Update on 9/30/14:
Divide-and-Conquer:
/**
* Definition for binary tree
* public class TreeNode {
* int val;<pre class="brush:java">
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public List<Integer> preorderTraversal(TreeNode root) {
List<Integer> result = new ArrayList<Integer>();
if (root == null) {
return result;
}
// Divide
List<Integer> left = preorderTraversal(root.left);
List<Integer> right = preorderTraversal(root.right);
result.add(root.val);
result.addAll(left);
result.addAll(right);
return result;
}
}
No comments:
Post a Comment