Given a circular array (the next element of the last element is the first element of the array), print the Next Greater Number for every element. The Next Greater Number of a number x is the first greater number to its traversing-order next in the array, which means you could search circularly to find its next greater number. If it doesn't exist, output -1 for this number.
Example
Example 1:
Input: [1,2,1]
Output: [2,-1,2]
Explanation: The first 1's next greater number is 2;
The number 2 can't find next greater number;
The second 1's next greater number needs to search circularly, which is also 2.
Example 2:
Input: [1]
Output: [-1]
Explanation:
The number 1 can't find next greater number.
Notice
The length of given array won't exceed 10000.
Solution:
monotonic descreasing stack.
Code (Java):
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | public class Solution { /** * @param nums: an array * @return: the Next Greater Number for every element */ public int [] nextGreaterElements( int [] nums) { // Write your code here if (nums == null || nums.length == 0 ) { return new int [ 0 ]; } int [] ans = new int [nums.length]; // init to -1 for ( int i = 0 ; i < nums.length; i++) { ans[i] = - 1 ; } // stack is mono descreasing stack, and it stores the index Stack<Integer> stack = new Stack<>(); for ( int i = 0 ; i < nums.length * 2 ; i++) { int ii = i % nums.length; while (!stack.isEmpty() && nums[ii] > nums[stack.peek()]) { ans[stack.pop()] = nums[ii]; } stack.push(ii); } return ans; } } |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | class Solution { public int [] nextGreaterElements( int [] nums) { int [] ans = new int [nums.length]; Stack<Integer> stack = new Stack<>(); for ( int i = nums.length * 2 - 1 ; i>= 0 ; i--) { int ii = i % nums.length; while (!stack.isEmpty() && nums[ii] >= nums[stack.peek()]) { stack.pop(); } ans[ii] = stack.isEmpty() ? - 1 : nums[stack.peek()]; stack.push(ii); } return ans; } } |
No comments:
Post a Comment