Given a circular array (the next element of the last element is the first element of the array), print the Next Greater Number for every element. The Next Greater Number of a number x is the first greater number to its traversing-order next in the array, which means you could search circularly to find its next greater number. If it doesn't exist, output -1 for this number.
Example
Example 1:
Input: [1,2,1]
Output: [2,-1,2]
Explanation: The first 1's next greater number is 2;
The number 2 can't find next greater number;
The second 1's next greater number needs to search circularly, which is also 2.
Example 2:
Input: [1]
Output: [-1]
Explanation:
The number 1 can't find next greater number.
Notice
The length of given array won't exceed 10000.
Solution:
monotonic descreasing stack.
Code (Java):
public class Solution {
/**
* @param nums: an array
* @return: the Next Greater Number for every element
*/
public int[] nextGreaterElements(int[] nums) {
// Write your code here
if (nums == null || nums.length == 0) {
return new int[0];
}
int[] ans = new int[nums.length];
// init to -1
for (int i = 0; i < nums.length; i++) {
ans[i] = -1;
}
// stack is mono descreasing stack, and it stores the index
Stack<Integer> stack = new Stack<>();
for (int i = 0; i < nums.length * 2; i++) {
int ii = i % nums.length;
while (!stack.isEmpty() && nums[ii] > nums[stack.peek()]) {
ans[stack.pop()] = nums[ii];
}
stack.push(ii);
}
return ans;
}
}
class Solution {
public int[] nextGreaterElements(int[] nums) {
int[] ans = new int[nums.length];
Stack<Integer> stack = new Stack<>();
for (int i = nums.length * 2 - 1; i>= 0; i--) {
int ii = i % nums.length;
while (!stack.isEmpty() && nums[ii] >= nums[stack.peek()]) {
stack.pop();
}
ans[ii] = stack.isEmpty() ? -1 : nums[stack.peek()];
stack.push(ii);
}
return ans;
}
}
No comments:
Post a Comment