Your are given a binary tree in which each node contains a value. Design an algorithm to get all paths which sum to a given value. The path does not need to start or end at the root or a leaf, but it must go in a straight line down.
Example
Example 1:
Input:
{1,2,3,4,#,2}
6
Output:
[
[2, 4],
[1, 3, 2]
]
Explanation:
The binary tree is like this:
1
/ \
2 3
/ /
4 2
for target 6, it is obvious 2 + 4 = 6 and 1 + 3 + 2 = 6.
Example 2:
Input:
{1,2,3,4}
10
Output:
[]
Explanation:
The binary tree is like this:
1
/ \
2 3
/
4
for target 10, there is no way to reach it.
Code (Java):1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 | /** * Definition of TreeNode: * public class TreeNode { * public int val; * public TreeNode left, right; * public TreeNode(int val) { * this.val = val; * this.left = this.right = null; * } * } */ public class Solution { /* * @param root: the root of binary tree * @param target: An integer * @return: all valid paths */ public List<List<Integer>> binaryTreePathSum2(TreeNode root, int target) { // write your code here List<List<Integer>> ans = new ArrayList<>(); if (root == null ) { return ans; } binaryTreePathSum2Helper(root, target, new ArrayList<Integer>(), ans); return ans; } private void binaryTreePathSum2Helper(TreeNode root, int target, List<Integer> curList, List<List<Integer>> ans) { if (root == null ) { return ; } curList.add(root.val); int sum = 0 ; for ( int i = curList.size() - 1 ; i >= 0 ; i--) { sum += curList.get(i); if (sum == target) { List<Integer> temp = new ArrayList<>(); for ( int j = i; j < curList.size(); j++) { temp.add(curList.get(j)); } ans.add(temp); } } binaryTreePathSum2Helper(root.left, target, curList, ans); binaryTreePathSum2Helper(root.right, target, curList, ans); curList.remove(curList.size() - 1 ); } } |