Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).
The above rectangle (with the red border) is defined by (row1, col1) = (2, 1) and (row2, col2) = (4, 3), which contains sum = 8.
Example:
Given matrix = [ [3, 0, 1, 4, 2], [5, 6, 3, 2, 1], [1, 2, 0, 1, 5], [4, 1, 0, 1, 7], [1, 0, 3, 0, 5] ] sumRegion(2, 1, 4, 3) -> 8 sumRegion(1, 1, 2, 2) -> 11 sumRegion(1, 2, 2, 4) -> 12
Note:
- You may assume that the matrix does not change.
- There are many calls to sumRegion function.
- You may assume that row1 ≤ row2 and col1 ≤ col2.
Understand the problem:
Construct a 2D array
sums[row+1][col+1]
(notice: we add additional blank row
sums[0][col+1]={0}
and blank column sums[row+1][0]={0}
to remove the edge case checking), so, we can have the following definitionsums[i+1][j+1]
represents the sum of area from matrix[0][0]
to matrix[i][j]
To calculate sums, the ideas as below
+-----+-+-------+ +--------+-----+ +-----+---------+ +-----+--------+
| | | | | | | | | | | | |
| | | | | | | | | | | | |
+-----+-+ | +--------+ | | | | +-----+ |
| | | | = | | + | | | - | |
+-----+-+ | | | +-----+ | | |
| | | | | | | |
| | | | | | | |
+---------------+ +--------------+ +---------------+ +--------------+
sums[i][j] = sums[i-1][j] + sums[i][j-1] - sums[i-1][j-1] +
matrix[i-1][j-1]
So, we use the same idea to find the specific area's sum.
+---------------+ +--------------+ +---------------+ +--------------+ +--------------+
| | | | | | | | | | | | | |
| (r1,c1) | | | | | | | | | | | | |
| +------+ | | | | | | | +---------+ | +---+ |
| | | | = | | | - | | | - | (r1,c2) | + | (r1,c1) |
| | | | | | | | | | | | | |
| +------+ | +---------+ | +---+ | | | | |
| (r2,c2)| | (r2,c2)| | (r2,c1) | | | | |
+---------------+ +--------------+ +---------------+ +--------------+ +--------------+
Code (Java):
public class NumMatrix { private int[][] matrix; private int[][] sum; public NumMatrix(int[][] matrix) { this.matrix = matrix; if (matrix == null || matrix.length == 0) { return; } int m = matrix.length; int n = matrix[0].length; sum = new int[m + 1][n + 1]; for (int i = 1; i <= m; i++) { for (int j = 1; j <= n; j++) { sum[i][j] = sum[i - 1][j] + sum[i][j - 1] - sum[i - 1][j - 1] + matrix[i - 1][j - 1]; } } } public int sumRegion(int row1, int col1, int row2, int col2) { return sum[row2 + 1][col2 + 1] - sum[row2 + 1][col1] - sum[row1][col2 + 1] + sum[row1][col1]; } } // Your NumMatrix object will be instantiated and called as such: // NumMatrix numMatrix = new NumMatrix(matrix); // numMatrix.sumRegion(0, 1, 2, 3); // numMatrix.sumRegion(1, 2, 3, 4);
No comments:
Post a Comment