For an integer array (index from 0 to n-1, where n is the size of this array), in the corresponding SegmentTree, each node stores an extra attribute
max
to denote the maximum number in the interval of the array (index from start to end).
Design a
query
method with three parameters root
, start
and end
, find the maximum number in the interval [start, end] by the given root of segment tree.
Example
For array
[1, 4, 2, 3]
, the corresponding Segment Tree is: [0, 3, max=4]
/ \
[0,1,max=4] [2,3,max=3]
/ \ / \
[0,0,max=1] [1,1,max=4] [2,2,max=2], [3,3,max=3]
query(root, 1, 1), return
4
query(root, 1, 2), return
4
query(root, 2, 3), return
3
query(root, 0, 2), return
4
Note
Code (Java):
Update on 5/6/19:
It is much easier to understand this problem if you finished Segment Tree Build first.
/** * Definition of SegmentTreeNode: * public class SegmentTreeNode { * public int start, end, max; * public SegmentTreeNode left, right; * public SegmentTreeNode(int start, int end, int max) { * this.start = start; * this.end = end; * this.max = max * this.left = this.right = null; * } * } */ public class Solution { /** *@param root, start, end: The root of segment tree and * an segment / interval *@return: The maximum number in the interval [start, end] */ public int query(SegmentTreeNode root, int start, int end) { // write your code here if (root == null || start > end) { return Integer.MIN_VALUE; } if (end < root.start || start > root.end) { return Integer.MIN_VALUE; } if (start == root.start && end == root.end) { return root.max; } int mid = root.start + (root.end - root.start) / 2; return Math.max(query(root.left, start, Math.min(mid, end)), query(root.right, Math.max(mid + 1, start), end)); } }
Update on 5/6/19:
/** * Definition of SegmentTreeNode: * public class SegmentTreeNode { * public int start, end, max; * public SegmentTreeNode left, right; * public SegmentTreeNode(int start, int end, int max) { * this.start = start; * this.end = end; * this.max = max * this.left = this.right = null; * } * } */ public class Solution { /** * @param root: The root of segment tree. * @param start: start value. * @param end: end value. * @return: The maximum number in the interval [start, end] */ public int query(SegmentTreeNode root, int start, int end) { // write your code here if (root == null || start > end) { return Integer.MIN_VALUE; } if (end < root.start || start > root.end) { return Integer.MIN_VALUE; } if (start == root.start && end == root.end) { return root.max; } int mid = root.start + (root.end - root.start) / 2; if (end <= mid) { return query(root.left, start, end); } else if (start >= mid + 1) { return query(root.right, start, end); } else { int leftMax = query(root.left, start, mid); int rightMax = query(root.right, mid + 1, end); return Math.max(leftMax, rightMax); } } }
No comments:
Post a Comment