Given a 2D binary matrix filled with 0's and 1's, find the largest square containing all 1's and return its area.
For example, given the following matrix:
1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 0Return 4.
This question can be solved by using DP.
-- Define dp[i][j] as the length of the maximal square of which the right bottom point ended with matrix[i][j].
-- Initial value dp[0][j] = matrix[0][j]; dp[i][0] = matrix[i][0];
-- Transit function: If matrix[i][j] == 1, dp[i][j] = Math.min(dp[i - 1][j], dp[i][j - 1], dp[i - 1][j - 1]) + 1;
-- Final state, max(dp[i][j] * dp[i][j])
Code (Java):
public class Solution {
public int maximalSquare(char[][] matrix) {
if (matrix == null || matrix.length == 0) {
return 0;
}
int rows = matrix.length;
int cols = matrix[0].length;
int[][] dp = new int[rows][cols];
// Initialization
for (int i = 0; i < cols; i++) {
dp[0][i] = matrix[0][i] - '0';
}
for (int i = 0; i < rows; i++) {
dp[i][0] = matrix[i][0] - '0';
}
for (int i = 1; i < rows; i++) {
for (int j = 1; j < cols; j++) {
if (matrix[i][j] == '1') {
dp[i][j] = Math.min(Math.min(dp[i - 1][j],
dp[i][j - 1]), dp[i - 1][j - 1]) + 1;
}
}
}
int maxArea = 0;
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
maxArea = Math.max(maxArea, dp[i][j] * dp[i][j]);
}
}
return maxArea;
}
}
Update on 4/2/19: Rolling array
public class Solution {
/**
* @param matrix: a matrix of 0 and 1
* @return: an integer
*/
public int maxSquare(int[][] matrix) {
if (matrix == null || matrix.length == 0) {
return 0;
}
int m = matrix.length;
int n = matrix[0].length;
int maxLen = 0;
int[][] dp = new int[2][n];
for (int i = 0; i < n; i++) {
if (matrix[0][i] == 1) {
dp[0][i] = 1;
maxLen = Math.max(maxLen, dp[0][i]);
}
}
int cur = 0;
int old = 0;
for (int i = 1; i < m; i++) {
old = cur;
cur = 1 - cur;
dp[cur][0] = matrix[i][0] == 1 ? 1 : 0;
maxLen = Math.max(maxLen, dp[cur][0]);
for (int j = 1; j < n; j++) {
if (matrix[i][j] == 1) {
dp[cur][j] = Math.min(dp[old][j - 1], Math.min(dp[old][j], dp[cur][j - 1])) + 1;
} else {
dp[cur][j] = 0;
}
maxLen = Math.max(maxLen, dp[cur][j]);
}
}
return maxLen * maxLen;
}
}
No comments:
Post a Comment