Design a data structure that supports the following two operations:
void addWord(word) bool search(word)
search(word) can search a literal word or a regular expression string containing only letters
a-z or .. A . means it can represent any one letter.
For example:
addWord("bad")
addWord("dad")
addWord("mad")
search("pad") -> false
search("bad") -> true
search(".ad") -> true
search("b..") -> true
Note:
You may assume that all words are consist of lowercase letters
You may assume that all words are consist of lowercase letters
a-z.
You should be familiar with how a Trie works. If not, please work on this problem: Implement Trie (Prefix Tree) first.
Understand the problem:
Use Trie + DFS
Code (Java):
public class WordDictionary {
class TrieNode {
char val;
boolean leaf;
TrieNode[] children;
public TrieNode() {
this.val = '\0';
this.leaf = false;
this.children = new TrieNode[26];
}
public TrieNode(char val, boolean leaf) {
this.val = val;
this.leaf = leaf;
this.children = new TrieNode[26];
}
}
private TrieNode root = new TrieNode();
private TrieNode dummyRoot = root;
// Adds a word into the data structure.
public void addWord(String word) {
TrieNode curr = root;
int offset = 'a';
int i = 0;
for (i = 0; i < word.length(); i++) {
char character = word.charAt(i);
if (curr.children[character - offset] == null) {
curr.children[character - offset] =
new TrieNode(character, i == word.length() - 1 ? true : false);
} else {
if (i == word.length() - 1) {
curr.children[character - offset].leaf = true;
}
}
curr = curr.children[character - offset];
}
}
// Returns if the word is in the data structure. A word could
// contain the dot character '.' to represent any one letter.
public boolean search(String word) {
if (word == null || word.length() == 0) {
return false;
}
TrieNode curr = root;
int offset = 'a';
for (int i = 0; i < word.length(); i++) {
char character = word.charAt(i);
if (character != '.') {
if (curr.children[character - offset] == null) {
return false;
}
curr = curr.children[character - offset];
} else {
// DFS
for (int j = 0; j < 26; j++) {
if (curr.children[j] != null) {
if (i == word.length() - 1 && curr.children[j].leaf) {
root = dummyRoot;
return true;
}
root = curr.children[j];
if (search(word.substring(i + 1))) {
root = dummyRoot;
return true;
}
}
}
root = dummyRoot;
return false;
}
}
if (curr != null && curr.leaf == false) {
return false;
}
return true;
}
}
// Your WordDictionary object will be instantiated and called as such:
// WordDictionary wordDictionary = new WordDictionary();
// wordDictionary.addWord("word");
// wordDictionary.search("pattern");
Update on 10/19/15:
Updated neat version without saving the value for a TrieNode.
There are mainly two tricks in the problem:
-- The first trick is, in the DFS, we need to change the root of the Trie, and don't forget to change it back.
-- The second trick is, when we tried all 26 possibilities without getting an answer, we must return false instead.
public class WordDictionary {
private Trie trie = new Trie();
// Adds a word into the data structure.
public void addWord(String word) {
trie.add(word);
}
// Returns if the word is in the data structure. A word could
// contain the dot character '.' to represent any one letter.
public boolean search(String word) {
return trie.search(word);
}
class Trie {
private TrieNode root = new TrieNode();
private TrieNode rootCopy = root;
// Add a word
void add(String word) {
TrieNode p = root;
for (int i = 0; i < word.length(); i++) {
char c = word.charAt(i);
if (p.children[c- 'a'] != null) {
p = p.children[c - 'a'];
} else {
p.children[c - 'a'] = new TrieNode();
p = p.children[c - 'a'];
}
if (i == word.length() - 1) {
p.leaf = true;
}
}
}
boolean search(String word) {
TrieNode p = root;
for (int i = 0; i < word.length(); i++) {
char c = word.charAt(i);
if (c == '.') {
for (int j = 0; j < 26; j++) {
if (p.children[j] != null) {
// Change the root pointer
root = p.children[j];
if (search(word.substring(i + 1))) {
root = rootCopy;
return true;
}
// Change back the root pointer
root = rootCopy;
}
}
// If none of them get true, return false;
return false;
} else {
if (p.children[c - 'a'] == null) {
return false;
}
p = p.children[c - 'a'];
}
}
if (!p.leaf) {
return false;
}
return true;
}
}
class TrieNode {
TrieNode[] children;
boolean leaf;
public TrieNode() {
children = new TrieNode[26];
}
}
}
// Your WordDictionary object will be instantiated and called as such:
// WordDictionary wordDictionary = new WordDictionary();
// wordDictionary.addWord("word");
// wordDictionary.search("pattern");
No comments:
Post a Comment