Given n, generate all structurally unique BST's (binary search trees) that store values 1...n.
For example,
Given n = 3, your program should return all 5 unique BST's shown below.
Given n = 3, your program should return all 5 unique BST's shown below.
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
confused what
Understand the problem:"{1,#,2,3}" means? > read more on how binary tree is serialized on OJ.The main difference between the BST I is it requires to output all unique BSTs. So we can use recursion solution.
Solution:
/**
* Definition for binary tree
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; left = null; right = null; }
* }
*/
public class Solution {
public List<TreeNode> generateTrees(int n) {
return generateTreesHelper(1, n);
}
private List<TreeNode> generateTreesHelper(int start, int end) {
List<TreeNode> result = new ArrayList<TreeNode>();
if (start > end) {
result.add(null);
return result;
}
for (int i = start; i <= end; i++) {
List<TreeNode> left = generateTreesHelper(start, i - 1);
List<TreeNode> right = generateTreesHelper(i + 1, end);
for (TreeNode l : left) {
for (TreeNode r : right) {
TreeNode root = new TreeNode(i);
root.left = l;
root.right = r;
result.add(root);
}
}
}
return result;
}
}
this answer is wrong
ReplyDelete