Clone an undirected graph. Each node in the graph contains a 
label and a list of its neighbors.OJ's undirected graph serialization:
Nodes are labeled uniquely.
We use # as a separator for each node, and , as a separator for node label and each neighbor of the node.
As an example, consider the serialized graph 
{0,1,2#1,2#2,2}.
The graph has a total of three nodes, and therefore contains three parts as separated by 
#.- First node is labeled as 
0. Connect node0to both nodes1and2. - Second node is labeled as 
1. Connect node1to node2. - Third node is labeled as 
2. Connect node2to node2(itself), thus forming a self-cycle. 
Visually, the graph looks like the following:
       1
      / \
     /   \
    0 --- 2
         / \
         \_/
Code (Java):
/**
 * Definition for undirected graph.
 * class UndirectedGraphNode {
 *     int label;
 *     List<UndirectedGraphNode> neighbors;
 *     UndirectedGraphNode(int x) { label = x; neighbors = new ArrayList<UndirectedGraphNode>(); }
 * };
 */
public class Solution {
    public UndirectedGraphNode cloneGraph(UndirectedGraphNode node) {
        if (node == null) {
            return null;
        }
        
        Map<UndirectedGraphNode, UndirectedGraphNode> map = new HashMap<UndirectedGraphNode, UndirectedGraphNode>();
        Queue<UndirectedGraphNode> queue = new LinkedList<UndirectedGraphNode>();
        
        // create the new node
        UndirectedGraphNode newNode = new UndirectedGraphNode(node.label);
        map.put(node, newNode);
        
        queue.offer(node);
        
        while (!queue.isEmpty()) {
            UndirectedGraphNode curr = queue.poll();
            List<UndirectedGraphNode> neighborNodes = curr.neighbors;
            
            for (UndirectedGraphNode neighbor : neighborNodes) {
                if (!map.containsKey(neighbor)) {
                    UndirectedGraphNode copy = new UndirectedGraphNode(neighbor.label);
                    map.put(neighbor, copy);
                    map.get(curr).neighbors.add(copy);
                    queue.offer(neighbor);
                } else {
                    map.get(curr).neighbors.add(map.get(neighbor));
                }
            }
        }
        
        return newNode;
    }
}
Update on 9/18/15:
/**
 * Definition for undirected graph.
 * class UndirectedGraphNode {
 *     int label;
 *     List<UndirectedGraphNode> neighbors;
 *     UndirectedGraphNode(int x) { label = x; neighbors = new ArrayList<UndirectedGraphNode>(); }
 * };
 */
public class Solution {
    public UndirectedGraphNode cloneGraph(UndirectedGraphNode node) {
        if (node == null) {
            return null;
        }
        
        UndirectedGraphNode newNode = new UndirectedGraphNode(node.label);
        
        Map<UndirectedGraphNode, UndirectedGraphNode> map = new HashMap<>();
        Queue<UndirectedGraphNode> queue = new LinkedList<>();
        
        queue.offer(node);
        map.put(node, newNode);
        
        while (!queue.isEmpty()) {
            UndirectedGraphNode curr = queue.poll();
            List<UndirectedGraphNode> neighbors = curr.neighbors;
            
            for (UndirectedGraphNode neighbor : neighbors) {
                if (!map.containsKey(neighbor)) {
                    UndirectedGraphNode newNeighbor = new UndirectedGraphNode(neighbor.label);
                    map.put(neighbor, newNeighbor);
                    map.get(curr).neighbors.add(newNeighbor);
                    queue.offer(neighbor);
                } else {
                    UndirectedGraphNode newNeighbor = map.get(neighbor);
                    map.get(curr).neighbors.add(newNeighbor);
                }
            }
        }
        
        return newNode;
    }
}
/**
 * Definition for Undirected graph.
 * class UndirectedGraphNode {
 *     int label;
 *     List<UndirectedGraphNode> neighbors;
 *     UndirectedGraphNode(int x) {
 *         label = x;
 *         neighbors = new ArrayList<UndirectedGraphNode>();
 *     }
 * }
 */
public class Solution {
    /**
     * @param node: A undirected graph node
     * @return: A undirected graph node
     */
    public UndirectedGraphNode cloneGraph(UndirectedGraphNode node) {
        // write your code here
        if (node == null) {
            return null;
        }
        
        Map<UndirectedGraphNode, UndirectedGraphNode> nodeMap = new HashMap<>();
        
        // step 1: clone the vertex
        Queue<UndirectedGraphNode> queue = new LinkedList<>();
        Set<UndirectedGraphNode> set = new HashSet<>();
        
        queue.offer(node);
        
        while (!queue.isEmpty()) {
            UndirectedGraphNode currNode = queue.poll();
            
            // copy the vertex
            nodeMap.put(currNode, new UndirectedGraphNode(currNode.label));
                
             for (UndirectedGraphNode neighbor : currNode.neighbors) {
                 if (!nodeMap.containsKey(neighbor)) {
                     queue.offer(neighbor);
                 }
             }
        }
        
        // step 2: copy the edges
        for (UndirectedGraphNode originalNode : nodeMap.keySet()) {
            for (UndirectedGraphNode neighbor : originalNode.neighbors) {
                nodeMap.get(originalNode).neighbors.add(nodeMap.get(neighbor));
            }
        }
        
        return nodeMap.get(node);
    }
}
What would be the time complexity?
ReplyDelete