Given a binary tree, return the preorder traversal of its nodes' values.
For example:
Given binary tree
Given binary tree
{1,#,2,3}
,1 \ 2 / 3
return
[1,2,3]
.
Note: Recursive solution is trivial, could you do it iteratively?
Understand the problem:
The problem asks for a preorder traversal of a binary tree. So first of all, you should understand what is preorder traversal of a binary tree. There is a post described about the tree traversal in detail.
http://www.cs.cmu.edu/~adamchik/15-121/lectures/Trees/trees.html
Basically, preorder traversal is to visit the parent first, then left children, then right children.
Recursive Approach:
The recursive approach is very straight-forward, just as how the binary tree is defined.
Code (Java):
/** * Definition for binary tree * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution { public ArrayList<Integer> preorderTraversal(TreeNode root) { ArrayList<Integer> result = new ArrayList<Integer>(); preorderTraversal(root, result); return result; } private void preorderTraversal(TreeNode node, ArrayList<Integer> result) { if (node == null) return; result.add(node.val); if (node.left != null) preorderTraversal(node.left, result); if (node.right != null) preorderTraversal(node.right, result); } }
Discussion:
The method takes O(n) time since we traverse all nodes of the tree. The space complexity is O(h) where h is the height of the tree.
Iterative approach:
In the iterative approach, we use a stack to store the intermediate data, just to mimic the recursive approach. The algorithm pops a node from the stack and prints the current value and push its right child into the stack, then push its left child into the stack.
Code (Java):
/** * Definition for binary tree * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution { public ArrayList<Integer> preorderTraversal(TreeNode root) { ArrayList<Integer> result = new ArrayList<Integer>(); if (root == null) return result; Stack<TreeNode> stack = new Stack<TreeNode>(); stack.push(root); while (! stack.isEmpty()) { TreeNode temp = stack.pop(); result.add(temp.val); if (temp.right != null) stack.push(temp.right); if (temp.left != null) stack.push(temp.left); } return result; } }
Summary:
In this post, we learned the preorder binary tree traversal. The recursive approach is straight-forward to implement. But make sure you understand the details. The iterative approach is close to recursive, but using a stack explicitly. In many tree-based problem, a stack is commonly used in iterative approach.
Update on 9/29/14:
/** * Definition for binary tree * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution { public List<Integer> preorderTraversal(TreeNode root) { List<Integer> result = new ArrayList<Integer>(); if (root == null) { return result; } Stack<TreeNode> stack = new Stack<TreeNode>(); stack.push(root); while (!stack.isEmpty()) { TreeNode curr = stack.pop(); result.add(curr.val); if (curr.right != null) { stack.push(curr.right); } if (curr.left != null) { stack.push(curr.left); } } return result; } }
Update on 9/30/14:
Divide-and-Conquer:
/** * Definition for binary tree * public class TreeNode { * int val;<pre class="brush:java"> * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution { public List<Integer> preorderTraversal(TreeNode root) { List<Integer> result = new ArrayList<Integer>(); if (root == null) { return result; } // Divide List<Integer> left = preorderTraversal(root.left); List<Integer> right = preorderTraversal(root.right); result.add(root.val); result.addAll(left); result.addAll(right); return result; } }
No comments:
Post a Comment