Given strings
S and T, find the minimum (contiguous) substring W of S, so that T is a subsequence of W.
If there is no such window in
S that covers all characters in T, return the empty string "". If there are multiple such minimum-length windows, return the one with the left-most starting index.
Example 1:
Input: S = "abcdebdde", T = "bde" Output: "bcde" Explanation: "bcde" is the answer because it occurs before "bdde" which has the same length. "deb" is not a smaller window because the elements of T in the window must occur in order.
Note:
- All the strings in the input will only contain lowercase letters.
- The length of
Swill be in the range[1, 20000]. - The length of
Twill be in the range[1, 100]
This is a two-sequence DP problem. We define dp[S.length() + 1][T.length() + 1], where dp[i][j] means the START POSITION of the minimum windows subsequnce for the first i charactgers from S and first j characters from T.
Code (Java):
class Solution {
public String minWindow(String S, String T) {
if (S == null || S.length() == 0 || T == null || T.length() == 0) {
return "";
}
int[][] dp = new int[S.length() + 1][T.length() + 1];
for (int i = 1; i <= T.length(); i++) {
dp[0][i] = -1;
}
for (int i = 1; i <= S.length(); i++) {
dp[i][0] = i;
}
int minLen = Integer.MAX_VALUE;
int startPos = -1;
for (int i = 1; i <= S.length(); i++) {
for (int j = 1; j <= T.length(); j++) {
dp[i][j] = -1;
if (S.charAt(i - 1) == T.charAt(j - 1)) {
dp[i][j] = dp[i - 1][j - 1];
} else {
dp[i][j] = dp[i - 1][j];
}
}
if (dp[i][T.length()] != -1) {
int len = i - dp[i][T.length()];
if (len < minLen) {
startPos = dp[i][T.length()];
minLen = len;
}
}
}
return startPos == -1? "" : S.substring(startPos, startPos + minLen);
}
}