Given strings
S
and T
, find the minimum (contiguous) substring W
of S
, so that T
is a subsequence of W
.
If there is no such window in
S
that covers all characters in T
, return the empty string ""
. If there are multiple such minimum-length windows, return the one with the left-most starting index.
Example 1:
Input: S = "abcdebdde", T = "bde" Output: "bcde" Explanation: "bcde" is the answer because it occurs before "bdde" which has the same length. "deb" is not a smaller window because the elements of T in the window must occur in order.
Note:
- All the strings in the input will only contain lowercase letters.
- The length of
S
will be in the range[1, 20000]
. - The length of
T
will be in the range[1, 100]
This is a two-sequence DP problem. We define dp[S.length() + 1][T.length() + 1], where dp[i][j] means the START POSITION of the minimum windows subsequnce for the first i charactgers from S and first j characters from T.
Code (Java):
class Solution { public String minWindow(String S, String T) { if (S == null || S.length() == 0 || T == null || T.length() == 0) { return ""; } int[][] dp = new int[S.length() + 1][T.length() + 1]; for (int i = 1; i <= T.length(); i++) { dp[0][i] = -1; } for (int i = 1; i <= S.length(); i++) { dp[i][0] = i; } int minLen = Integer.MAX_VALUE; int startPos = -1; for (int i = 1; i <= S.length(); i++) { for (int j = 1; j <= T.length(); j++) { dp[i][j] = -1; if (S.charAt(i - 1) == T.charAt(j - 1)) { dp[i][j] = dp[i - 1][j - 1]; } else { dp[i][j] = dp[i - 1][j]; } } if (dp[i][T.length()] != -1) { int len = i - dp[i][T.length()]; if (len < minLen) { startPos = dp[i][T.length()]; minLen = len; } } } return startPos == -1? "" : S.substring(startPos, startPos + minLen); } }